

?

Fragen zur "Pegelrechnung in dB"

1. Der Pegel ist bei einem Spannungsverhältnis: (Anwendung in der Audio- und NF-Technik)

Feldgröße: $L_U = 20 \cdot \log (U_1 / U_2)$ Gleichung (1)

Diese Gleichung gilt für die elektrische Spannung sowie andere "lineare" Größen.

UdK Berlin Sengpiel 10.96 F + A 2. Der Pegel in dB ist bei einem Leistungsverhältnis: (Anwendung in der HF- und Nachrichtentechnik)

Energiegröße: $L_D = 10 \cdot \log (P_1 / P_2)$ Gleichung (2)

Diese Gleichung gilt für die elektrische Leistung sowie andere "quadratische" Größen. ($P \sim U^2$)

Aufgabe 1:

Es ist anzukreuzen, welche der beiden Pegel-Gleichungen für die jeweiligen Verhältnisse zutrifft.

Verhältnis a_1/a_2 bzw. b_1/b_2 = Faki	Energiegröße for $L = 10 \cdot \log (a_1/a_2)$	Feldgröße $L = 20 \cdot \log (b_1/b_2)$	1
Schall-Druck <i>p</i>			_
Schall-Leistung Pak			
Schall-Intensität J			
Schall-Schnelle v			
Schall-Energiedichte E			
Schall-Auslenkung ξ			
Schall-Entfernung r (Druck)		I	
Elektrische Spannung <i>U</i>		 	-
Elektrische Stromstärke I			
Elektrische Leistung P			
Elektrischer Widerstand R			Wird selten in dB and

Der Schalldruck ist die weitaus am häufigsten verwendete akustische Feldgröße, so wie es die Spannung bei elektrischen Schaltkreisen ist. Deshalb wird diese zweite Gleichungsform mit "20 · log b_1/b_2 " viel häufiger angewendet.

Merke: Verhältnisse von physikalischen Größen sind immer dimensionslos. Das "dB" ist eine Pseudo-Einheit.

Die akustischen Feld- und Energiegrößen werden fast immer in dB angegeben. Um die absoluten Größenwerte errechnen zu können, muss die jeweilige **Bezugsgröße** (Referenz) bekannt sein.

Aufgabe 2:

Welches sind die wichtigsten akustischen Bezugsgrößen mit ihrer Einheit bei der Pegelrechnung?

Bezugspegel			Bezugsgröße	1	Einheit	l
Schall-Druckpegel p_0 Schall-Schnellepegel Schall-Intensitätspegel Schall-Leistungspegel Schall-Energiedichtepege	$v_0 = p_0/Z_0$ $J_0 = p_0 \cdot v_0$ $P_0 = J_0 \cdot A_0$ $E = J_0/c$	 		 		

Weitere Hilfsgrößen zu Aufgabe 2: $Z_0 = 413 \text{ N} \cdot \text{s} / \text{m}^3 \text{ bei } 20^{\circ}\text{C}$ $A_0 = 1 \text{ m}^2$ $c = 343 \text{ m/s bei } 20^{\circ}\text{C}$

Die Pegelgröße "dB" wird unter Ton- und Fachleuten immer nur "De-Be" ausgesprochen. In Vorträgen für die Allgemeinheit (im Fernsehen) wird "Dezibel" gesagt, um scheinbar die Verständlichkeit zu erhöhen: "Durch die Doppelfenster konnte der Fluglärm im Schlafzimmer um 17 **Dezibel** gesenkt werden."

Hilfe: "Elektrische Spannung und die dB-Werte" und "Vergleichende Darstellung von Schallfeldgrößen":

http://www.sengpielaudio.com/Rechner-schallgroessen.htm

http://www.sengpielaudio.com/ElektrischeSpannungUndDieDB.pdf

http://www.sengpielaudio.com/VergleichendeDarstellungVonSchallf.pdf