Keyboard music grand piano frequencies note names tone chord piano keys musical 88 notes frequency names of all keys on a piano naming notes German English system MIDI - sengpielaudio
 
Deutsche Version UK-flag s/w - sengpielaudio D-flag - sengpielaudio
 
Keyboard and frequencies
Naming of musical notes and piano keys
 
Music notation systems − Music frequencies of equal temperament tuning
 
Chord name finder by note entry
 
The English and American scientific system versus the German system
Scientific Pitch Notation (SPN), also known as American Standard Pitch Notation
 
The standard pitch tuning is A4 (A above middle C) − in German-speaking countries it is called a’.
The notes have different names. The German system is used also in many other countries, as there are
e.g. Poland, Czech Republic, and Russia.
A "normal" piano has the following dimensions: width 145 to 150 cm, height 115 to 125 cm, depth 52 to 60 cm.
A typical "keyboard" has 61 keys today. The sound frequencies of the 88 keys on the piano are:
 
Piano
   key number   
English
notation
German
notation
 Frequency 
Hz
88 C8 - Last tone c’’’’’ - Highest  4186.01
87 B7 h’’’’  3951.07
86 A#7/Bb7 ais’’’’/b’’’’  3729.31
85 A7 a’’’’  3520.00
84 G#7/Ab7 gis’’’’/as’’’’  3322.44
83 G7 g’’’’  3135.96
82 F#7/Gb7 fis’’’’/ges’’’’  2959.96
81 F7 f’’’’  2793.83
80 E7 e’’’’  2637.02
79 D#7/Eb7 dis’’’’/es''''  2489.02
78 D7 d’’’’  2349.32
77 C#7/Db7 cis’’’’/des’’’’  2217.46
76 C7 c’’’’  2093.00
75 B6 h’’’  1975.53
74 A#6/Bb6 ais’’’/b’’’  1864.66
73 A6 a’’’  1760.00
72 G#6/Ab6 gis’’’/as’’’  1661.22
71 G6 g’’’  1567.98
70 F#6/Gb6 fis’’’/ges’’’  1479.98
69 F6 f’’’  1396.91
68 E6 e’’’  1318.51
67 D#6/Eb6 dis’’’/es’’’  1244.51
66 D6 d’’’  1174.66
65 C#6/Db6 cis’’’/des’’’  1108.73
64 C6 (high C) c’’’  1046.50
63 B5 h’’    987.767
62 A#5/Bb5 ais’’/b’’    932.328
61 A5 a’’    880.000
60 G#5/Ab5 gis’’/as’’    830.609
59 G5 g’’    783.991
58 F#5/Gb5 fis’’/ges’’    739.989
57 F5 f’’    698.456
56 E5 e’’    659.255
55 D#5/Eb5 dis’’/es’’    622.254
54 D5 d’’    587.330
53 C#5/Db5 cis’’/des’’    554.365
52 C5 c’’    523.251
51 B4 h’    493.883
50 A#4/Bb4 ais’/b’    466.164
49 A4 concert pitch  Kammerton        440.000
48 G#4/Ab4 gis’/as    415.305
47 G4 g’    391.995
46 F#4/Gb4 fis’/ges’    369.994
45 F4 f’    349.228
44 E4 e’    329.628
43 D#4/Eb4 dis’/es’    311.127
42 D4 d’    293.665
41 C#4/Db4 cis’/des’    277.183
40 C4 (middle C) c’ (Schloss-C)    261.626
39 B3 h    246.942
38 A#3/Bb3 ais/b    233.082
37 A3 a    220.000
36 G#3/Ab3 gis/as    207.652
35 G3 g    195.998
34 F#3/Gb3 fis/ges    184.997
33 F3 f    174.614
32 E3 e    164.814
31 D#3/Eb3 dis/es    155.563
30 D3 d    146.832
29 C#3/Db3 cis/des    138.591
28 C3 c    130.813
27 B2 H    123.471
26 A#2/Bb2 Ais/B    116.541
25 A2 A    110.000
24 G#2/Ab2 Gis/As    103.826
23 G2 G      97.9989
22 F#2/Gb2 Fis/Ges      92.4986
21 F2 F      87.3071
20 E2 E      82.4069
19 D#2/Eb2 Dis/Es      77.7817
18 D2 D      73.4162
17 C#2/Db2 Cis/Des      69.2957
16 C2 (low C) C      65.4064
15 B1 ,H      61.7354
14 A#1/Bb1 ,Ais/,B    ~60 Hz      58.2705
13 A1 ,A      55.0000
12 G#1/Ab1 ,Gis/,As      51.9130
11 G1 ,G           ~50 Hz      48.9995
10 F#1/Gb1 ,Fis/,Ges      46.2493
9 F1 ,F      43.6536
8 E1 ,E      41.2035
7 D#1/Eb1 ,Dis/,Es      38.8909
6 D1 ,D      36.7081
5 C#1/Db1 ,Cis/,Des      34.6479
4 C1 ,C      32.7032
3 B0 ,,H      30.8677
2 A#0/Bb0 ,,Ais/,,B      29.1353
1 A0 - First tone ,,A - Lowest      27.5000  

In the twelve-semitone scale the frequency of the next semitone (halftone) is higher by the factor of twelfth root of two = 1.0594630943592952645618252949463 or lower by the factor 0.94387431268169349664191315666757.

A sound engineer should know the following: The AC hum of 50 Hz in Europe is close to
the pitch of G1 = 48.99 Hz (49 Hz). The AC hum of 60 Hz in the U.S. is a minor third higher close to the pitch of A#1/Bb1 = 58.27 Hz (58 Hz).
So you can find out logically, whether a sound recording was made in Europe or in the U.S.

A pure tone with the frequency f = 440 Hz has the amplitude function:
A = sin (880 π×t) - where t is given in seconds.

The following equation will give the frequency f of the
nth piano key number, as shown in the table:
f(n) = 440\ (\sqrt[12]{2}\,)^{n-49}\,
Alternatively, this can be written as:
f(n) = 440 \times 2^{\frac{n-49}{12}}\,

"Middle C" is in any case only approximately in the middle for the modern concert piano. For most other instruments it is not in the middle at all. It is is the lowest note on the standard flute, almost the highest note on the bassoon. Notationally it is the point of symmetry between the treble and bass staffs (the current position of the clefs being relatively modern inventions, and relative to modern human vocal ranges); that is the only other sense in which it is "in the middle".

Notenlinie

Notes and keyboard

Notes and keybord

The concert pitch A4 = a on the piano lies in the
octave between C4 = c (middle C) and C5= c’’.

One octave

The middle C note as octave C4 and the next octave C5.
 
"Middle C" is designated C4 in scientific pitch notation with a frequency of 261.6 Hz,
because of the note's position as the fourth C key on a standard 88 key piano keyboard.

 
Some manufacturers label the 440 Hz concert pitch not correctly as A3. It is really A4.
Cubase, Akai, and ProTools are starting differently at octave −2, or octave 1. That's not the standard.
The first tone is the note A0 and that is 27.5 Hz. The classical music wold is counting this way.
The tuning pitch for the Western music (concert pitch), is 440 Hz. It is named A4 or a’.

Musical note A4: http://www.wolframalpha.com/input/?i=musical+note+A4&lk=1
 
Name and frequency of the octave positions
English A0 A1 A2 A3 A4 A5 A6 A7 A8
German ,,A ,A A a a’ a’’ a’’’ a’’’’ a’’’’’
Frequency in Hz  27.5 55 110 220 440 880 1760 3520 7040

Numbers of the lowest c note for the respective musical octave.

All octaves

Ranges of some popular instruments

Instrument  Start   End  
guitar E2 E6
seven string guitar B1 E6
cello C2 A6
4-string bass guitar E1 E5
piano A0 C8
piccolo C5 C8
violin G3 E7

All piano keys

Oktaveinteilung
 
Frequencies of the equal temperament − table or chart
Octave 0 1 2 3 4 5 6 7 8 9 10
C / B# 16.352 32.703 65.406 130.813 261.626 523.251 1046.502 2093.005 4186.009 8372.018 16744.036
C# / Db 17.324 34.648 69.296 138.591 277.183 554.365 1108.731 2217.461 4434.922 8869.844 17739.688
D 18.354 36.708 73.416 146.832 293.665 587.330 1174.659 2349.318 4698.636 9397.273 18794.545
D# / Eb 19.445 38.891 77.782 155.563 311.127 622.254 1244.508 2489.016 4978.032 9956.063 19912.127
E / Fb 20.602 41.203 82.407 164.814 329.628 659.255 1318.510 2637.020 5274.041 10548.082 -
F / E# 21.827 43.654 87.307 174.614 349.228 698.456 1396.913 2793.826 5587.652 11175.303 -
F# / Gb 23.125 46.249 92.499 184.997 369.994 739.989 1479.978 2959.955 5919.911 11839.822 -
G 24.500 48.999 97.999 195.998 391.995 783.991 1567.982 3135.963 6271.927 12543.854 -
G# / Ab 25.957 51.913 103.826 207.652 415.305 830.609 1661.219 3322.438 6644.875 13289.750 -
A 27.500 55.000 110.000 220.000 440.000 880.000 1760.000 3520.000 7040.000 14080.000 -
A# / Bb 29.135 58.270 116.541 233.082 466.164 932.328 1864.655 3729.310 7458.620 14917.240 -
B / Cb 30.868 61.735 123.471 246.942 493.883 987.767 1975.533 3951.066 7902.133 15804.266 -

Comparing the Frequency Ratios for Equal Temperament and Pure Harmonic Series

Interval table

Size (Measure) of all Steinway Grand Pianos
 
Type Length Width Height
S 155 cm 147 cm 101 cm
M 170 cm 147 cm 101 cm
O 180 cm 147 cm 101 cm
A 188 cm 147 cm 101 cm
B 211 cm 148 cm 101 cm
C 227 cm 155 cm 101 cm
D 274 cm 157 cm 101 cm
 
Interval conversions - Frequency ratio to cents and vice versa
 
Frequency domain of musical instruments, singing voices (vocals), and keyboards
 
Vocal range:
 
Pitch Start End
Bass   82 Hz   349 Hz
Bariton   89 Hz   392 Hz
Tenor 131 Hz   494 Hz
Alt 175 Hz   699 Hz
Soprano 247 Hz 1175 Hz
 
... and showing the keyboard, and the note names.

Guitar Fret Board with Notes

Guitar Note Names

MIDI note numbers (midi files)

Octave notation is given here in the international standard ISO system, formerly known as the ASA (Acoustical Society of America) or ANSI system. In this system, middle C (MIDI note number 60) is C4; octaves start with C, so the B just below (MIDI number 59) is B3.
The lowest note of the normal modern piano is A0 (MIDI 21), though Boesendorfer Imperials go down to F0 or even C0. The highest note of the piano is C8 (MIDI 108).

Octave # MIDI Note Numbers
C C# D D# E F F# G G# A A# B
−1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127        

Note: The MIDI specification only defines note number 60 as "Middle C", and all other notes are relative. The absolute octave number designations shown here are based on Middle C = C4, which is an arbitrary assignment.

Method for finding the corresponding MIDI note number for a given frequency:
Original expression f = 440 × 2(n − 69) / 12

Simplification step 1: f / 440 = 2(n − 69) / 12
Simplification step 2: log2 (f / 440) = (n − 69) / 12
Simplification step 3: 12 × log2 (f / 440) = n – 69

 
Formula for finding a MIDI note number given the frequency in Hz of the MIDI note: n = (12 × log2 (f / 440)) + 69
Given the frequency f for a note in Hz, it is possible to find the corresponding MIDI note number represented by the variable n.
 
One version of the MIDI system uses C3 to designate Middle C (MIDI note 60 = 261.626 Hz).
That means that the octave designation for MIDI note "0" would be "-2" or notated as C-2.
Another version of the MIDI system uses the lowest note available to the MIDI system.
MIDI note 1 = 8.176 Hz to designate Octave "0" with the notation of C0.
"Middle C" is the MIDI note 60 = 261.626 Hz. That is octave 4 with the notation of C4.

MIDI Notes and their corresponding frequencies
 
The frequency 261.626 Hz = C4 (middle C),
and not C5 or C3, how some firms try to explain us; look at:

http://www.music.vt.edu/musicdictionary/appendix/octaveregisters/octaveregisters.html

Note MIDI Hz      Note MIDI Hz      Note MIDI Hz      Note MIDI Hz
C - 0 8.176     G# 1 32 51.913     E 4 64 329.63     C 7 96 2093.0
C# - 1 8.662     A 1 33 55.000     F 4 65 349.23     C# 7 97 2217.5
D - 2 9.177     A# 2 34 58.270     F# 4 66 369.99     D 7 98 2349.3
D# - 3 9.723     B 1 35 61.735     G 4 67 391.99     D# 7 99 2489.0
E - 4 10.301      C 2 36 65.406     G# 4 68 415.31     E 7 100 2637.0
F - 5 10.913     C# 2 37 69.295     A 4 69 440.00     F 7 101 2793.8
F# - 6 11.562     D 2 38 73.416     A# 4 70 466.16     F# 7 102 2960.0
G - 7 12.250     D# 2 39 77.781     B 4 71 439.88     G 7 103 3136.0
G# - 8 12.978     E 2 40 82.406     C 5 72 523.25     G# 7 104 3322.4
A - 9 13.750     F 2 41 87.307     C# 5 73 554.37     A 7 105 3520.0
A# - 10 14.568     F# 2 42 92.499     D 5 74 587.33     A# 7 106 3729.3
B - 11 15.434     G 2 43 97.998     D# 5 75 622.25     B 7 107 3951.1
C 0 12 16.352     G# 2 44 103.82     E 5 76 659.26     C 8 108 4186.0
C# 0 13 17.324     A 2 45 110.00     F 5 77 698.46     C# 8 109 4434.9
D 0 14 18.354     A# 2 46 116.54     F# 5 78 739.99     D 8 110 4698.6
D# 0 15 19.445     B 2 47 123.47     G 5 79 783.99     D# 8 111 4978.0
E 0 16 20.601     C 3 48 130.81     G# 5 80 830.61     E 8 112 5274.0
F 0 17 21.826     C# 3 49 138.59     A 5 81 880.00     F 8 113 5587.7
F# 0 18 23.124     D 3 50 146.83     A# 5 82 932.32     F# 8 114 5919.9
G 0 19 24.499     D# 3 51 155.56     B 5 83 987.77     G 8 115 6271.9
G# 0 20 25.956     E 3 52 164.81     C 6 84 1046.5     G# 8 116 6644.9
A 0 21 27.50     F 3 53 174.61     C# 6 85 1108.7     A 8 117 7040.0
A# 0 22 29.135     F# 3 54 184.99     D 6 86 1174.7     A# 8 118 7458.6
B 0 23 30.867     G 3 55 195.99     D# 6 87 1244.5     B 8 119 7902.1
C 1 24 32.703     G# 3 56 207.65     E 6 88 1318.5     C 9 120 8372.0
C# 1 25 34.648     A 3 57 220.00     F 6 89 1396.9     C# 9 121 8869.8
D 1 26 36.708     A# 3 58 233.08     F# 6 90 1480.0     D 9 122 9397.3
D# 1 27 38.890     B 3 59 246.94     G 6 91 1568.0     D# 9 123 9956.1
E 1 28 41.203     C 4 60 261.63     G# 6 92 1661.2     E 9 124 10548.1
F 1 29 43.653     C# 4 61 277.18     A 6 93 1760.0     F 9 125 11175.3
F# 1 30 46.249     D 4 62 293.66     A# 6 94 1864.7     F# 9 126 11839.8
G 1 31 48.999     D# 4 63 311.13     B 6 95 1975.5     G 9 127 12543.9

sengpielaudio

Frequency to Musical Note Converter
Find out what musical note a given frequency is. English system.

 
Frequency  Hz
 
   
 
Note 
 Offset  cents 
 
The frequency of 440 Hz is the concert pitch note A4.
If someone tells you different, this person is in error.
 
Since 1939 in many countries the valid standard pitch is set at A4 = 440 Hz. In German and Austrian symphony orchestras, however, a tuning for A4 = 443 Hz is common.
In Switzerland it is A4 = 442 Hz. Herbert von Karajan tuned his Berlin Philharmonic Orchestra at A4 = 444 Hz.
That is however, not the standard pitch.
 
 
Overtones, partials and harmonics from fundamental frequency
 
Frequency domain of musical instruments, singing voices (vocals), and keyboards
 
Conversions of Intervals - Frequency ratio to cents and cents to frequency ratio

[top of page]

Not only take something from this website to enhance your knowledge.
Please, also give some feedback to the author to improve the performance.
 
back weiter Search Engine weiter home start